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Algebraic nature of shape-invariant and self-similar potentials

A B Balantekin†, M A Cândido Ribeiro‡ and A N F Aleixo§‖
Department of Physics, University of Wisconsin, Madison, WI 53706, USA

Received 20 November 1998

Abstract. Self-similar potentials generalize the concept of shape invariance which was originally
introduced to explore exactly solvable potentials in quantum mechanics. In this paper it is shown
that the previously introduced algebraic approach to the latter can be generalized to the former. The
infinite Lie algebras introduced in this context are shown to be closely related to theq-algebras.
The associated coherent states are investigated.

1. Introduction

Supersymmetric quantum mechanics has been shown to be a useful technique to explore exactly
solvable problems in quantum mechanics [1]. Introducing the function

W(x) ≡ − h̄√
2m

[
9 ′0(x)
90(x)

]
(1.1)

where90(x) is the ground state wavefunction of the HamiltonianĤ , and the operators

Â ≡ W(x) +
i√
2m
p̂ (1.2)

Â† ≡ W(x)− i√
2m
p̂ (1.3)

we can show that

Â|90〉 = 0 (1.4)

and

Ĥ − E0 = Â†Â. (1.5)

An integrability condition called shape invariance was introduced by Gendenshtein [2]
and was cast into an algebraic form by Balantekin [3]. The shape-invariance condition can be
written as

Â(a1)Â
†(a1) = Â†(a2)Â(a2) +R(a1) (1.6)

wherea1,2 are a set of parameters. The parametera2 is a function ofa1 and the remainder
R(a1) is independent of̂x andp̂. Not all exactly solvable potentials are shape-invariant [4].
In the cases studied so far the parametersa1 anda2 are either related by a translation [4, 5]
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or a scaling [6]. Introducing the similarity transformation that replacesa1 with a2 in a given
operator

T̂ (a1)Ô(a1)T̂
†(a1) = Ô(a2) (1.7)

and the operators

B̂+ = Â†(a1)T̂ (a1) (1.8)

B̂− = B̂†
+ = T̂ †(a1)Â(a1) (1.9)

the Hamiltonian takes the form

Ĥ − E0 = B̂+B̂−. (1.10)

The Lie algebra associated by the shape invariance is defined with the commutation relations

[B̂−, B̂+] = T̂ †(a1)R(a1)T̂ (a1) ≡ R(a0) (1.11)

and

[B̂+, R(a0)] = [R(a1)− R(a0)]B̂+ (1.12)

[B̂+, {R(a1)− R(a0)}B̂+] = {[R(a2)− R(a1)] − [R(a1)− R(a0)]}B̂2 (1.13)

and the Hermitian conjugates of the relations given in equations (1.12) and (1.13). In general
there is an infinite number of such commutation relations, hence the appropriate Lie algebra is
infinite-dimensional. In some special cases where the parameters are related by translation it
is possible to reduce this infinite-dimensional algebra to a finite-dimensional one [3, 7, 8]. In
this paper we explore the relationship betweenq-algebras and the cases where the parameters
are related by scaling.

2. Coherent states

Since the operator̂B− satisfies the relation

B̂−|90〉 = 0 (2.1)

and the excited states can be written in the form

|9n〉 ∝ B̂n+ |90〉 (2.2)

the operatorB̂− does not have a left inverse and the operatorB̂+ does not have a right inverse.
However, a right inverse for̂B−

B̂−B̂−1
− = 1 (2.3)

and a left inverse for̂B+

B̂−1
+ B̂+ = 1 (2.4)

can be defined. Similarly in the Hilbert space of the eigenstates of the Hamiltonian, the inverse
of Ĥ does not exist, but

Ĥ−1B̂+ = B̂−1
− (2.5)

does. Also introducing

Q̂† = Ĥ−1/2B̂+ (2.6)

and its Hermitian conjugate

Q̂ = (Q̂†)† = B̂−Ĥ−1/2 (2.7)
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one can show that

Q̂Q̂† = 1̂. (2.8)

The normalized excited states can then be written as

|9n〉 = (Q̂+)
n|90〉 (2.9)

provided that the ground state is normalized, i.e.〈90|90〉 = 1.
We introduce the coherent state for a shape-invariant potential as

|z〉 = |0〉 + zB̂−1
− |0〉 + z2B̂−2

− |0〉 + · · ·
= 1

1− zB̂−1
−
|0〉 (2.10)

where we used the shorthand notation|0〉 ≡ |90〉. One can easily show that this state in an
eigenstate of the operatorB̂−:

B̂−|z〉 = z|z〉 (2.11)

and satisfies the condition

(B̂− − z) ∂
∂z
|z〉 = |z〉. (2.12)

The state|z〉 coincides with the coherent state defined in [9] using a generalized exponential
function. When the Lie algebra associated with the shape-invariant potential isSU(1, 1) [3,7],
this is not the standard coherent state introduced in [10], but the state introduced by Barut and
Girardello [11].

If a forced harmonic oscillator is in the ground state fort = 0, it evolves into the harmonic-
oscillator coherent state. We must emphasize that the coherent states described here, in general,
do not have such a simple dynamical interpretation. To illustrate this point we consider the
time-dependent Hamiltonian

ĥ(t) = B̂+B̂− + f (t)[eiR(a1)t/h̄B̂+ + B̂−e−iR(a1)t/h̄] (2.13)

wheref (t) is an arbitrary function of time. The solution of the time-evolution equation

ih̄
∂û(t)

∂t
= ĥ(t)û(t) (2.14)

can be written as

û(t) = exp

{
− i

h̄
B̂+B̂−t

}
ûI (t). (2.15)

Substituting equation (2.14) into (2.15) one can show thatûI (t) satisfies the equation

ih̄
∂ûI (t)

∂t
= f (t)[B̂+ + B̂−]ûI (t). (2.16)

The solution of equation (2.16) can be immediately written as

ûI (t) = exp

{
− i

h̄

∫ t

0
f (t ′) dt ′ [B̂+ + B̂−]

}
. (2.17)

Hence under the time-evolution the ground state evolves into the state

|9, t〉 = ûI (t)|0〉 (2.18)

which is not equivalent to the state given in equation (2.10).
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3. Self-similar potentials andq-algebras

Shabat [12] and Spiridonov [13] discussed reflectionless potentials with an infinite number of
bound states. These self-similar potentials are shown to be shape invariant in [6] and [14]. In
this case the parameters are related by a scaling:

an = qn−1a1. (3.1)

Barclayet al studied such shape-invariant potentials in detail [6]. In the simplest case studied
by them the remainder of equation (1.6) is given by

R(a1) = ca1 (3.2)

wherec is a constant and the operator introduced in equation (1.7) by

T̂ (a1) = exp

{
(logq)a1

∂

∂a1

}
. (3.3)

Hence the energy eigenvalue of thenth excited state is

En = R(a1) +R(a2) + · · · +R(an)
= (1 +q + q2 + · · · + qn−1)ca1

= 1− qn
1− q ca1 (3.4)

which is the spectra of quantum oscillator [15]. Introducing the scaled operators

K̂± = √qB̂± (3.5)

one can show that the commutation relations of equations (1.11)–(1.13) take the form

[K̂−, K̂+] = R(a1) (3.6)

and

[K̂+, R(a1)] = (q − 1)R(a1)K̂+. (3.7)

Note that the algebra associated with the self-similar potentials is not a finite Lie algebra as
K̂+ does not commute withR(a1)K̂

n
+:

[K̂+, (q − 1)nR(a1)K̂
n
+] = (q − 1)n+1R(a1)K̂

n+1
+ . (3.8)

Further introducing the operators

Ŝ+ = K̂+R(a1)
−1/2 (3.9)

and

Ŝ− = (Ŝ+)
† = R(a1)

−1/2K̂− (3.10)

using equation (3.6) one can show that the standardq-deformed oscillator relation is satisfied:

Ŝ−Ŝ+ − qŜ+Ŝ− = 1. (3.11)

In the most general case for a self-similar potential the functionW(x) of equation (1.1)
satisfies the condition [12,13]

W(x)
a1→a2−→ √qW(√qx) (3.12)

or equivalently

Â†(x), Â(x)
a1→a2−→ √qÂ†(

√
qx),
√
qÂ(
√
qx). (3.13)

Inserting equation (3.13) into (1.6) one obtains theq-deformed form of equation (1.6):

Â(x)Â†(x)− qÂ†(
√
qx)Â(

√
qx) = R(a1). (3.14)
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Introducing the operators [16]

Ĉ = Â(x)e− 1
2px

d
dx (3.15)

and

Ĉ = e+ 1
2px

d
dx Â†(x) (3.16)

whereq = ep, equation (3.14) can be rewritten as

ĈĈ†− qĈ†Ĉ = R(a1). (3.17)

Note that an algebraic approach to the self-similar potentials was already introduced
in [7,8]. Here we would like to establish that our algebra is identical to that in [8]. To this end
we introduce

Ĵ3 = − 1

p
loga0. (3.18)

Using equation (3.18), equation (1.11) can be written as

[B̂−, B̂+] = c exp(−pĴ3). (3.19)

Using equation (1.7), one can show that for an arbitrary functionf (an) of the parametersan
we can write

f (an)B̂+ = B̂+f (an−1) (3.20)

and

f (an)B̂− = B̂−f (an+1). (3.21)

Using equations (3.20) and (3.21) one can easily prove the commutation relation

[Ĵ3, B̂±] = ±B̂±. (3.22)

Equations (3.19) and (3.22) represent the algebra introduced in [8]. This algebra is a
deformation of the standardSO(2, 1) algebra.

The coherent state is easy to construct. The term multiplyingzn in equation (2.10) is

znB̂−n− |0〉 = zn(Ĥ−1B̂+)
n|0〉

= [En(En − En−1)(En − En−2) . . . (En − E1)]
−1/2|n〉 (3.23)

where|n〉 is the shorthand notation for thenth excited state|9n〉 the energy of which isEn.
Inserting equation (3.4) into (3.23) one can write down the coherent state as

|z〉 =
∞∑
n=0

zn√
[R(a1)]n

(1− q)n/2q−n(n−1)/4

√
(q; q)n

|n〉 (3.24)

where theq-shifted factorial(q; q)n is defined as(z; q)0 = 1 and(z; q)n =
∏n−1
j=0(1− zqj ),

n = 1, 2, . . . . One observes that the norm of this state belongs to the one-parameter family
of q-exponential functions considered by Floreaniniet al [17]. Alternative approaches to the
coherent states for theq-algebras were given in [15] and [18] and were used to construct path
integrals in [19]. In addition Fukui has shown that a coherent state associated with shape
invariance leads to a particularq-coherent state [14].
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